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Abstract 

This study examines the relationship between students' pre-college experience with computers and their 

later success in introductory computer science classes in college. Data were drawn from a nationally 

representative sample of 10,197 students enrolled in computer science at 118 colleges and universities in 

the United States. We found that students taking introductory college computer science classes who had 

programmed on their own prior to college had a more positive attitude toward computer science, lower 

odds of dropping out, and earned higher grades, compared with students who had learned to program in a 

pre-college class, but had never programmed on own, or those who had never learned programming before 

college. Moreover, nearly half of the effect on final grades was mediated by a positive attitude toward 

computing.  
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1. Introduction  

“…it is often the case that students come into the institution with a self-taught ‘cowboy’ 

style of programming that in no way resembles the good programming practices which we 

are trying to convey. In teaching, we have to make sure that those students change their 

habits over time. Changing one’s habits, however, is harder than learning new ones.”  

—Kölling, 1999, p. 4   

Preparing students for careers that require college degrees in science, technology, engineering, and 

mathematics (STEM) is a dominant concern of K-12 education in the United States (Handelsman & Smith, 

2016). Computing lies at the epicenter of this concern (Smith, 2016), as labor force experts have issued dire 

warnings that the overall size of the American-trained future workforce in the computer science and IT 

fields is too small to maintain the nation's status as a leader in this area (National Research Council, 2012).  

Students interested in majoring in computer science (CS) or other STEM fields want to do well in their 

introductory college CS course, because inferior performance may lead them to abandon career plans and 

change majors. However, learning to program is difficult—it requires thinking in a completely new way 

(Robins et al., 2003) known as computational thinking (Grover & Pea, 2013). It also requires that students 

be comfortable with learning by trial and error, (Anderson & Gegg-Harrison, 2013; Cooper, Dann, & 

Pausch, 2003), learning from open communities, and creating and participating in socially engaged practice 

(“the social turn”; Kafai & Burke, 2013). It has been found that it takes a novice programmer about 10 

years to become an expert (Winslow 1996). Researchers have noticed a bimodal distribution in course 

grades (Lilja, 2001; Lister & Leaney, 2003; Carey, 2010), with failure rates commonly ranging between 

30% to 60% (Bennedsen & Caspersen, 2007; Dehnadi & Bornat, 2006; Robins, 2010, Watson & Li, 2014). 
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A large body of research over the past 40 years has examined factors that predict success in introductory 

CS courses. Learning theory research suggests a growth mindset versus fixed mindset about learning may 

be a factor in general student success (Dweck, 2006). The CS education literature has identified several 

predictors of success in programming, namely, mathematics ability (Beaubouef, 2002; Byrne and Lyons, 

2001;Konvalina, Wileman, & Stephens, 1983; Werth, 1986; Wilson & Shrock, 2001), problem-solving 

ability (Nowaczyk, 1984), high aptitude (determined by SAT, ACT, or researcher-administered tests; 

Wileman et al., 1981), perceived self-efficacy (Wiedenbeck, 2005), strong previous academic performance 

(Byrne & Lyons, 2001), and psychological factors, such as student comfort level (Ventura, 2005).  

Of all the factors tested in the CS education literature, previous programming experience stands out as the 

single factor most consistently predicting student success in these courses (Wiedenbeck, 2005 [n=120]; 

Byrne & Lyons, 2001 [n=110]; Wilson & Shrock, 2001 [n=105]; and Hagan & Markham, 2000 [n=75]). 

Furthermore, “prior self-initiated computer experience, [mostly gained outside of school through “hacking” 

and unguided exploration], was highly predictive of university-level introductory CS course performance” 

(Kersteen, Linn, Clancy, & Hardyck, 1988, p. 328). Other researchers in the 1980s had also demonstrated 

that students were able to acquire a considerable amount of computational thinking skills by learning in a 

purely self-discovery environment without any teaching intervention (Kurland & Pea, 1985; Papert, 1980). 

The underlying philosophy is consistent with learning theories such as constructivism (Piaget & Inhelder, 

1969), active learning (Harmin & Toth, 2006), and learning by design (Goldman, Eguchi, & Sklar, 2004), 

and quickly became the cornerstone of educational interventions using LEGO-Mindstorm (Kabatova & 

Pekarova, 2010) and robot design (Mubin et al., 2013). This philosophy, however, stands in contradiction 

to Kölling’s (1999) assertion of the drawbacks of “cowboy programming” (in the title of this article, we 

expanded the original term adding "cowgirl programming" to steer clear of what some might consider 

gender-biased language, We have combined both, for convenience in places, with “cowhand” 

programming)—if we define cowhand programming as self-initiated programming practice, unguided and 

outside of school.  In any case, just how much a self-initiated/self-discovery cowhand programming 

experience improves or hampers students’ long-term programming efficacy and performance is yet to be 

examined. Researchers who took a middle ground advocated that self-discovery-based learning should be 

incorporated with a guided and supportive curriculum (Fay & Mayer, 1994; Lee & Thompson, 1997; 

Mayer, 2004). Nevertheless, the comparative efficacy of cowhand-oriented and instruction-oriented 

approaches, the interplay of the two approaches, and the optimal sequence of the two approaches, remain 

hotly debated (Chase & Klahr, 2017; Dean & Kuhn, 2007; Furtak et al., 2012; Klahr, 2010; Roll et al., 

2017; Tobias & Duffy, 2009; Weaver et al., 2017). 

A clearer understanding of the specific ways of attaining programming experience that helps students 

succeed in later CS coursework will benefit practitioners who operate or create programs, students who 

must choose in what fashion to expend their time and energy, and college CS instructors who seek to 

understand their students’ learning styles and to create the best learning opportunities for their students. 

This is more important today than ever because of the rising investment in K-12 CS offerings, as well as 

the proliferation of free, interactive, responsive, web-based programming education platforms like 

CodeAcademy, code.org, and Khan Academy, where one can learn programming on one’s own. 

While CS education at the K-12 level has expanded significantly in the United States (e.g., CS 10k, AP 

Computer Science: Principles), across the European Union (e.g., European Coding Initiative), in the United 

Kingdom (e.g., Computing at School), Australia (e.g., Digital Technologies), and Mexico (Escherle, 

Ramirez-ramirez, Basawapatna, Maiello, & Nolazco-florez, 2016), little is known about the degree to 

which such initiatives are successful beyond the immediate measurement of student enjoyment. A more 

rigorous approach to evaluating the effectiveness of precollege experiences is to measure their impact on 

performance in later introductory college coursework (Tai, Sadler, & Mintzes, 2006). In this way, many 

different types of in-school and out-of-school initiatives and experiences can be compared, and resources 

can be better allocated to those programs that are the most effective, rather than relying on anecdotal reports 

to make policy decisions. In the case of computer science, examining the degree to which precollege 

experiences predict performance in introductory college CS courses nationwide, provides a metric that is 

both fair and meaningful. 

In this study, we ask if pre-college cowhand programming experience is associated with different college 

level CS attitude and performance, compared with a) students who had never had any programming 

experience, b) students who had learned programming only in a previous class, but never cowhand, and c) 

students who had both in-class and cowhand programming experience (in each possible sequence). 

https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR9
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR14
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR24
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR51
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2. Data Collection 

The “Factors Influencing College Success in Information Technology” (FICSIT) study, which was 

conducted at Harvard University with funding from the National Science Foundation (grant number 

1339200), supplied the data for this article. The FICSIT study sent out a 52-item survey to examine the pre-

college computer experiences of students. The study’s investigators obtained responses from a stratified 

random sample of 10,197 students enrolled in 118 2- and 4-year colleges and universities across the United 

States. The Integrated Postsecondary Education Data System of the National Center for Educational 

Statistics provided a listing of post-secondary institutions that was used to build a stratified random sample 

reflecting the proportion of students in the U.S. enrolled in 2-and 4-year colleges in three different size bins 

(small, medium, and large). We contacted 1080 different institutions (279 2-year and 801 4-year) that 

offered introductory courses in CS in the fall semester of 2015; 138 of them agreed to participate (30 2-

year and 108 4-year), and 118 of them (23 2-year and 95 4-year) actually returned the survey. Thus, our 

final sample consisted of 118 institutions. Within the first two weeks of class, 10,197 students filled out a 

52-item, paper-and-pencil, in-class survey about their prior CS experiences and current attitudes about 

computing, along with background questions about a wide variety of their educational experiences, as well 

as family background and demographic characteristics. Instructors provided students’ final grade in the 

college introductory CS course or indicated that the student had dropped the course. We excluded 

respondents who had missing values in more than 50% of the questionnaire or in the key predictor variables 

or outcome variables. As a result, the final sample size in our analysis was 8,891. 

 

3. Variables and modeling  

This section explains the variables and analysis methods. In a nutshell, the predictor of interest was 

participants’ programming experience, but we also controlled for a wide range of background variables. 

The predictor variables and controlled variables were collected retrospectively. The dependent or outcome 

variables were 1) the grade in computer science that they eventually received in the introductory CS course 

by the end of the semester (filled in by their instructors); 2) participants’ attitude toward computer science 

at the time they answered the survey; and 3) course completion. Students in the sample were clustered in 

the models by their course instructor. To account for the significant autonomy instructors often have in 

grading, a random intercept, two-level hierarchical approach was used in all models. We first built 

hierarchical regression models to predict each of the dependent variables separately. We further constructed 

a path model to predict multiple dependent variables simultaneously.  

 

3.1. Predictor of Interest 

While this study considered many student pre-college experiences with computing as possible predictors 

of performance, the final models examined programming experience in terms of “cowhand programming” 

and in-class computing experience. Our definition of cowhand programming was that a student had 

programmed by him/herself without the supervision of classroom teachers. It could happen prior or after 

taking computing classes, or not in combination with any in-class experience. The type of programming 

experience was determined based on participants’ answers to questions about “taking a class about 

computer programming,” “have programmed on my own,” and the order of the two. There were five groups: 

1) control (n=6824), students who had never taken any class about computer programming, nor had 

practiced programming outside of class; 2) cowboy-or-cowgirl-only (479), students who had programmed 

on their own, but had never taken any class about computer programming; 3) cowhandclass (n=250), 

students who had first programmed on their own prior to taking a class about computer programming; 4) 

classcowhand (n=422), students who had started programming on their own during or after taking a class; 

5) Class-only (n=916), students who had taken classes about computer programming, but had never 

programmed on their own. We did not know the particular programming languages that the participants 

learned because such information was not specified in the questionnaire. We discuss this limitation by the 

end of the article. 

3.2. Control Variables 

Several variables were used in the model to account for significant differences in student backgrounds. 

Gender was coded as a dichotomous variable, zero for female and one for male. Race/ethnicity was divided 

into five categories coded as a set of dummy variables—Asian, Hispanic, black, and white, with white as 

the baseline.  
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Socioeconomic status (SES) entered the model through the proxy of parents’ education. The parents’ 

highest level of education was indicated by students on a scale from zero through five: zero representing 

“did not finish high school,” one—“high school graduate,” two—“some college,” three—“4 years of 

college,” and four—“graduate level education.”  

Mathematics preparation has often been found to be associated with CS course performance (Byrne & 

Lyons, 2001; Werth, 1986; Wilson & Shrock, 2001). The SAT/ACT mathematics score was used as a proxy 

for the students’ academic preparation and aptitude. If students reported ACT scores, but no SAT scores, 

their ACT scores were converted to the SAT scale according to a concordance published by the College 

Board (1999). In our sample, the correlation between SAT/ACT mathematics score and overall SAT/ACT 

score was 0.25. 

We also controlled for whether the student was born in the United States, whether the first language was 

English, whether the student went to a public high school, whether the student had access to computer at 

home, and whether the job of any of the parents was related to CS. In all statistical models, we have 

controlled for the covariates listed above. 

3.3 Dependent Variables 

 This study estimated with three distinct dependent variables. The first was a hierarchical linear regression 

model, for which the dependent variable was the numerical grade in the course in introductory college CS 

at the end the semester. Institutions in the sample used different measures in awarding grades, with 11% 

using single letter grades (i.e., A, B, C, D, F), 40% using “+” and “-” to augment letter grades (e.g., A+, 

B-), and 49% using a 100-point scale. All letter grades reported were converted to the same 0 to 100-point 

scale (e.g., B+=88.5, B=85, B-=81.5). For uniformity, all grades below 60 were coded as 55, representing 

an “F.” 

The second was another hierarchical linear regression model. The dependent variable was positive attitude 

toward CS, which was represented by the first component score based on a principal component analysis 

of 23 items. Overall, this is a measurement of the level of interest, efficacy, and comfort in regard to 

computing. The scale was developed by the authors, Inspiration for some attitude items was drawn from 

the Computing Research Association (CRA) Undergraduate Survey and the Scientific Attitude Inventory 

(Moore & Hill Foy, 1997). The scale had a very good internal consistency with a Cronbach alpha value of 

0.91. We used the first component because it has an eigenvalue of 9.12 and successfully explained 38% of 

the variance, whereas the second component only has an eigenvalue of 1.60 explaining 6.4% of the variance. 

Table 1 presents the wording and loading of each item. 

Table 1. Wording and PCA loading of each items in the scale measuring positive attitude towards CS 
 

Positive Attitude (PC1) 

Items Loading Contrib% 

1. Computer science is interesting to me 0.84 7.75 

2. I look forward to taking computer science 0.83 7.70 

3. I feel I belong in computer science 0.80 7.00 

4. I am confident I can do well in computer science 0.76 6.25 

5. Computer science is a creative activity 0.75 6.20 

6. Computer science can help in solving problems 0.74 5.96 

7. I enjoy using algorithms to solve computational problems 0.73 5.79 

8. Computer science allows me to develop models from 

abstractions 

0.73 5.82 

9. I feel comfortable doing computer science 0.72 5.64 

10. Computer science facilitates the creation of knowledge 0.70 5.47 

11. Computer science is relevant to real life 0.63 4.38 

12. I do not get discouraged from setbacks in computer science 0.62 4.30 

13. I wish I did not have to take computer science -0.61 4.21 

14. Computer science is boring for me -0.59 3.93 

15. I feel accepted by my peers in computer science 0.56 3.43 

16. Computer science provides new ways to communicate 

globally 

0.55 3.36 

17. The internet fosters collaboration worldwide 0.49 2.64 

18. I am comfortable asking classmates for help 0.43 1.96 
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19. Computer science people are intelligent 0.39 1.71 

20. Most people can understand computer science 0.39 1.67 

21. I am comfortable asking my professors/TAs/tutors for help 0.37 1.54 

22. Computer science makes me nervous -0.32 1.17 

23. Most people in computer science are nerds or geeks 0.02 0.01 

 

The third model was a hierarchical logistic regression model, with a binary dependent variable indicating 

whether students either completed their college CS course or dropped out of the course—5.54% of sampled 

students. Lastly, we specified a path model to test the relationship among cowhand programming 

experience, positive attitude towards CS, and final grade. Specifically, we examined whether the effect of 

prior experience on the final grade was mediated by positive attitude.  

4. Results 

4.1 Descriptive Statistics 

The mean grade for those who completed the course was 84.34 (sd=13.83) on a 100-point scale. The mean 

mathematics SAT/ACT score was 639.27 (sd=126.53), approximately 1.39 standard deviation (in standard 

deviation units of our sample) higher than the national average of 500 (College Board, 2014). Two-thirds 

of the sample had at least one parent with either 4 years of college or a post-graduate education. With just 

a 5.5% dropout rate, this U.S. study’s findings are at odds with Bennedsen and Caspersen’s (2007) and 

Watson and Li’s (2014) global studies, which estimated a roughly 33% dropout rate for introductory 

programming courses. Other descriptive summaries, broken down by programming experience groups, are 

shown in Table 2. 

Table 2. Descriptive summary by group 

 None Cowhand Only Cowhand-> 

Class 

Class-> 

Cowhand 

Class Only 

Definition:      

      Taking class No No Yes Yes Yes 

      Practicing programming No Yes Prior class In/After class No 

N 6824 479 250 422 916 

Dropout Rate 5.80% 3.50% 4.40% 4.70% 5.80% 

Final Grade (sd) 84.01 (13.94) 87.46 (12.33) 86.75 (11.79) 86.21 (12.37) 82.40 (14.88) 

Male 70.76% 85.14% 82.11% 80.14% 68.34% 

Born in US 75.40% 82.67% 81.20% 84.59% 68.62% 

English is First Language 69.50% 79.33% 79.60% 76.06% 66.32% 

Public High School 77.40% 73.27% 71.60% 77.25% 79.49% 

Race. Asian 24.20% 24.63% 26.80% 23.93% 19.87% 

          Hispanic 9.60% 2.64% 4.00% 6.23% 15.28% 

          Black 8.40% 5.33% 4.80% 6.10% 15.48% 

          White 57.80% 67.40% 64.40% 63.74% 49.37% 

SAT Math Score  

          ...(sd) 

634.54 

(125.71) 

683.11 (104.64) 693.12 (109.07) 678.72 (108.73) 561.25 

(142.78) 

CS Help Outside of School 6.60% 16.07% 20.40% 15.87% 8.70% 

Parents' Jobs Relate to CS 2.10% 32.35% 46% 33.88% 23.01% 

Access Computer at Home 9.10% 97.28% 92.33% 96.19% 83.55% 
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4.2. Hierarchical Models 

Our first hierarchical regression model (M1) showed that all three groups that had cowhand programming 

experience did not statistically differ from each other in the final grade. All three of them outperformed the 

control group. They also outperformed the Class-Only group based on our post-hoc test (for Cowhand-

Only versus Class-Only, 2=17.70, p<0.001; for CowhandClass versus Class-Only, 2=13.11, p<0.001; 

for ClassCowhand, 2=9.59, p=0.002). Figure 1 shows the predicted score by programming experience 

groups, controlling for other covariates at the mean. This result also translates to a significant main effect 

of cowhand programming (=2.13, se=0.47, p<0001) if we aggregate the five groups into two groups 

(Cowhand versus non-Cowhand). On average, students who had programmed on their own scored 2.13 

points higher than students who had not, an effect size of 0.15.  

 

Figure 1. Predicted final grade ( 1 s.e) by different programming experience based on the hierarchical 

regression model.  

 

Similarly, in M2, the three groups that had cowhand programming experience did not differ from each other 

on the scale of positive attitude towards CS, whereas they scored higher than the control and the Class-

Only group. In the hierarchical logistic regression predicting student dropout (M3), we found that the 

Cowhand-Only group was the only group that to yield significantly lower odds of dropping out than the 

control group. The parameters for all three models are shown in Table 3. 
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Lastly, we used the path analysis to examine a possible mediation of the effect from cowhand programming 

experience to final grade via positive attitude. Because M1 and M2 have both shown that the three groups 

with cowhand programming experience did not differ from each other, and that Class Only and the control 

group did not differ from each other, we decided to simplify our model to merge the five groups into two 

groups (Cowhand versus Non-Cowhand) to model the cowhand programming effect in general. We ran a 

path analysis that simultaneously tested for the effect of cowhand programming on positive attitude, the 

effect of cowhand programming on final grade, and the effect of positive attitude on final grade, while 

controlling for all covariates and accounting for the two-level clustering. 

As shown in Figure 2 (for presentation purpose this figure does not show the covariates and clustering; they 

were nevertheless accounted for in the model), when modeling the effects simultaneously, cowhand 

programming had significant positive effect on positive attitude (std.est=1.735, robust.se=0.113, p<0.001) 

and final grade (std.est=0.086, robust.se=0.035, p=0.015), and the positive attitude also had a positive effect 

on final grade (std.est=0.041, robust.se=0.005, p<0.001). There was a significant mediation effect from 

cowhand programming to final grade via positive attitude (std.est=0.070, robust.se=0.009, p<0.001), 

whereas the total effect from cowhand programming to final grade was 0.157. In other words, 44.58% of 

the total effect from cowhand programming to final grade was mediated by positive attitude.  

 

b s.e. p-value b s.e. p-value Odd Ratio s.e. p-value

Cowboy-Only 2.23 0.68 0.001 1.29 0.14 0.0001 0.52 0.16 0.04

Cowboy->Class 2.43 0.92 0.01 1.31 0.19 0.0001 0.64 0.25 0.25

Class->Cowboy 1.59 0.7 0.03 1.19 0.15 0.0001 0.61 0.17 0.08

Class-Only -0.8 0.77 0.227 -0.16 0.12 0.17 0.89 0.3 0.75

Male -1.04 0.36 0.004 0.94 0.07 0.0001 0.94 0.13 0.67

US born -0.75 0.49 0.13 -0.37 0.11 0.001 1.65 0.32 0.01

Language 0.59 0.47 0.21 -0.02 0.1 0.8 0.79 0.14 0.19

Pub-School 0.27 0.38 0.48 0.01 0.08 0.88 1 0.15 0.99

Asian -0.83 0.44 0.06 -0.16 0.09 0.1 0.85 0.14 0.37

Hisp -1.09 0.55 0.04 0.27 0.11 0.02 0.84 0.17 0.42

Black -4.51 0.63 0.0001 -0.05 0.13 0.71 0.84 0.22 0.5

Ed Father 0.41 0.17 0.01 -0.09 0.04 0.02 0.93 0.06 0.26

Ed Mother -0.08 0.18 0.65 -0.03 0.04 0.05 0.96 0.07 0.53

SAT score 0.02 0.001 0.0001 0.003 0.0003 0.0001 0.99 0.0004 0.0001

Help 0.23 0.58 0.69 0.28 0.13 0.03 0.6 0.16 0.06

Parent job -0.59 0.38 0.12 -0.13 0.08 0.12 0.93 0.14 0.64

Access to 

computer
0.14 0.75 0.85 0.08 0.16 0.61 0.52 0.13 0.01

Intercept 68.11 1.44 0.0001 -3.79 0.32 0.0001 0.21 0.12 0.006

se
2
(Level-2) 22.84 0.38 0.89 0.07 2.85 0.21

sµ
2
(Level-1) 147.38 0.11 2.53 0.02

Table 3. Hierarchical regression model predicting the final grade and the odd of dropout

M1.Final Grade M3.DropoutM3.Positive Attitude 
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Figure 2. Path diagram of the effect from Cowhand programming to final grade partially mediated by 

positive attitude towards computer science. Other covariates and two-level clustering were accounted for 

in the estimation but not shown in the diagram. 

 

5. Discussion and conclusion 

In Paradoxes of Education in a Republic, philosopher Eva Brann (1979) wrote, in 1979, “Those who lack 

a good grounding must learn laboriously and lengthily in schools what the well-educated learn quickly by 

themselves.” She mentioned computer programming explicitly as an example of a field in which this is the 

case. We have found little to refute this nearly half-century-old claim. At the pre-college level, self-directed 

learning still may be the best way to learn to program. 

Why might it be the case that cowhand programmers outperformed the other students on all fronts? It is 

reasonable to suspect that cowhand programmers have a greater perceived self-efficacy and comfort level 

with programming. Moreover, by programming alone, cowhand programmers have expressed greater 

interest in, and commitment to, the subject, which may help them push through the difficult portions of 

their college CS course when many of their peers do not. This interpretation is supported by the mediation 

effect of positive attitude, which measures the level of interest, efficacy, and comfort. Previous research 

has also shown such a mentality to be associated with success in CS (Ramalingam, LaBelle, & Wiedenbeck, 

2004; Ventura, 2005; Wiedenbeck, 2005). In addition, because college requires a more independent 

working style than does high school, it is possible that cowhand programmers are more suited to college 

success in general. College work may require more independence from classroom instructors, but it is not 

independent of the outside world. This is especially true for CS, which enables, and heavily relies upon, 

the open source online community. The development of search engines, as well as the ease with which 

learners can access the help of experts through message boards and websites like Stack Exchange, means 

that one is hardly learning alone anymore when one is programming “on one’s own.” Students who have 

had the experience of programming independent of a classroom instructor may be more familiar and 

comfortable using a variety of tools to “geek out and mess around,” an attribute that is crucial for new 

generation programmers and innovators (Ito et al., 2009; Liggett, 2014; McKenna & Bergie, 2016). 

Compared with the cowhand-only group, our study did not find any distinctive advantage for cowhand 

programming in combination with classroom learning in whichever sequence. This might be due to the lack 

of information about the pedagogy adopted in the prior computing classes. Nevertheless, our finding 

strongly suggests that to learn in class without any independent hands-on experience is a rather ineffective 

strategy.  

The major limitation of this study was that we could not narrow down the language, environment and 

pedagogy in which the cowhand and in-class groups were introduced to computer programming. Because 

of the varying complexity of underlying data structures and algorithms, the specific programming 

languages the students are exposed to could make a significant difference in their attitude toward CS 

Cowhand 

Programmi

ng 

Positive 

Attitude 

Final Grade 

1.735 

0.086 

0.041 
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subjects in general. For example, students who had experience with Alice, which uses stories and games to 

teach logic and primitive data structures, would have very different understanding and expectations of CS 

subjects from those who had exposure to a modern high-level programming language like C++ or Java. It 

is not uncommon for CS majors to drop out or change majors simply because they are frustrated by the 

very first programming language they encounter. As a matter of fact, many schools have moved from the 

strongly typed (stricter typing rules) languages, such as C++ or Java, to scripting languages like Python in 

their CS1 curriculum, to improve retention. Future studies should carefully observe the context in which 

student learn their first programming language by themselves, with family, online or in class. 

Cowhand programmers’ stronger college CS performance suggests that, whatever bad habits they may have 

developed by lacking a teacher to guide them, as Kölling (1999) suggests, those are more than compensated 

for by what they learn on their own. However, the claim that cowhand programmers have a tendency pick 

up negative habits may be far less tenable today than it may have been in 1999, at the time of his writing. 

Recent advances in graphic based languages, such as Scratch, as introductory languages, have greatly 

reduced the demand for syntactic memory. Accompanied with well-designed tutorials, challenges and 

forums online, these introductory languages have empowered beginners to self-explore and self-teach at a 

young age. Many scholars once expressed concerns, similar to Kölling’s, that non-professional languages 

may introduce bad syntactic habits, such as missing semicolons or cluttered global variables (Meerbaun, 

Armoni & Ben-Ari, 2011; Powers, Ecott & Hirshfield, 2007; Techapalokul, 2017). An increasing number 

of studies, however, has shown that such an introductory language environment both promotes interest in 

programming (Bers, 2010; Brennan et al., 2011; Fessakis, Gouli & Mavroudi, 2013; Sáez-López, Román-

González & Vázquez-Cano, 2016; Weintrop & Wilensky, 2017; Wilson & Moffat, 2012) and has long-

term performance benefits in programming (Chen, Haduong, Brennan, Sonnert & Sadler, 2018). Based on 

our findings, and the recent development of beginner friendly programming environments, we recommend 

that 1) introduction to computer programming should not wait until taking a formal course; students should 

be encouraged to explore by themselves. 2) Getting one’s hands “dirty” is more important than keeping the 

code “clean” and well formatted. Only following instruction in a pre-college classroom without more 

independent hand-on experience may place students at a disadvantage compared with those who have hand-

on experience, but are not class-trained. 3) To program in cowhand style does not only lead to acquisition 

of knowledge and skills, but more importantly appears to cultivate a positive attitude towards computer 

science, which translates to better performance in programming in the long term. 

The demand for professional programmers, the interest in majoring in CS in college, and the general push 

by parents and policy makers for K-12 offerings in computer science have all increased (Yadav, 2016; 

Strickland, 2014; Taylor & Miller, 2015). In the meantime, many secondary CS teachers are currently 

undertrained, with limited teacher preparation for teaching pre-college computer science in the United 

States (Yadav, 2016). Despite the scarcity of resources, students have pursued self-teaching through 

innovative channels such as Code Academy, Dev Bootcamp, and open resources (McKenna & Bergie, 

2016). We believe such a self-initiated approach should be supported wherever and whenever possible by 

pointing students towards the best available learning resources and encouraging them to work on their own 

with the help of responsive tools, online community support, and well-designed instruction.  
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